Search results

1 – 5 of 5
Article
Publication date: 8 May 2018

Mahantesh M. Nandeppanavar

This paper aims to investigate laminar boundary layer flow and heat transfer from a warm laminar Casson liquid to a melting sheet moving parallel to a melting stream. The…

Abstract

Purpose

This paper aims to investigate laminar boundary layer flow and heat transfer from a warm laminar Casson liquid to a melting sheet moving parallel to a melting stream. The governing equations, i.e. continuity, momentum and heat transfer, are coupled non-linear partial differential equations. These equations are reduced to non-linear ordinary differential equations by means of similarity transformations, converted into first-order differential equations, and are solved numerically using the Runge–Kutta–Felhberg method with an efficient shooting technique. The velocity and temperature profiles are plotted for various values of the governing parameters, such as the moving parameter, Prandlt number, melting parameter and Casson parameter. It is found that the problem admits multiple solutions. The results of this study are validated by comparing them with the earlier published studies’ results. Thus, a good agreement is obtained.

Design/methodology/approach

This study carries out numerical solution of melting heat transfer analysis.

Findings

The findings of this study show the analysis of flow and melting heat transfer characteristics.

Research limitations/implications

In this study, analysis of dual solution is carried out.

Originality/value

In this paper, the melting heat transfer analysis on Blasius flow of a Casson fluid is taken into consideration. To the best of the author’s knowledge, no investigations have been reported on this topic.

Article
Publication date: 22 July 2021

Mahantesh M. Nandeppanavar, Kemparaju M.C. and Raveendra N.

This paper aims to find the influence of convective heat transfer, buoyancy proportions, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number on…

Abstract

Purpose

This paper aims to find the influence of convective heat transfer, buoyancy proportions, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number on velocity, temperature and concentration profiles.

Design/methodology/approach

This paper explores the heat and mass transfer of a stagnation point stream of free convective Casson fluid over a moving vertical plate with nonlinear thermal radiation and convective boundary restrictions. The governing PDEs of stream, heat and concentration profiles were reformed into an arrangement of nonlinear ODEs by using similarity transformation. This framework was then tackled numerically by applying forth-order RK shooting strategy.

Findings

Distribution of flow, velocity and temperature profiles for different values of governing parameters are analyzed.

Originality/value

The original results are depicted in terms of plots.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 May 2020

Mahantesh M. Nandeppanavar, M.C. Kemparaju, R. Madhusudhan and S. Vaishali

The steady two-dimensional laminar boundary layer flow, heat and mass transfer over a flat plate with convective surface heat flux was considered. The governing nonlinear partial…

Abstract

Purpose

The steady two-dimensional laminar boundary layer flow, heat and mass transfer over a flat plate with convective surface heat flux was considered. The governing nonlinear partial differential equations were transformed into a system of nonlinear ordinary differential equations and then solved numerically by Runge–Kutta method with the most efficient shooting technique. Then, the effect of variable viscosity and variable thermal conductivity on the fluid flow with thermal radiation effects and viscous dissipation was studied. Velocity, temperature and concentration profiles respectively were plotted for various values of pertinent parameters. It was found that the momentum slip acts as a boost for enhancement of the velocity profile in the boundary layer region, whereas temperature and concentration profiles decelerate with the momentum slip.

Design/methodology/approach

Numerical Solution is applied to find the solution of the boundary value problem.

Findings

Velocity, heat transfer analysis is done with comparing earlier results for some standard cases.

Originality/value

100

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 November 2020

Mahantesh M. Nandeppanavar, Kemparaju M.C. and N. Raveendra

This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and…

Abstract

Purpose

This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and convective boundary conditions.

Design/methodology/approach

The main partial differential equations of the flow, heat and concentration profiles were rehabilitated to nonlinear ordinary differential equations by using an appropriate similarity transformation. The resultant nonlinear ordinary differential equations (ODEs) are solved numerically applying fourth-order Runge–Kutta shooting technique and functions of ODE45 from MATLAB.

Findings

The effect of convective heat transfer, buoyancy ratio parameter, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number over velocity, temperature and concentration profiles, equivalent to abundant somatic parameters were graphically scrutinized.

Originality/value

All the results are very promising and further there is got good agreement of results when compared with earlier published results at limiting conditions.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 September 2019

Mahantesh M. Nandeppanavar, T. Srinivasulu and Shanker Bandari

The purpose of this paper is to study the flow, heat and mass transfer of MHD Casson nanofluid due to an inclined stretching sheet using similarity transformation, the governing…

Abstract

Purpose

The purpose of this paper is to study the flow, heat and mass transfer of MHD Casson nanofluid due to an inclined stretching sheet using similarity transformation, the governing PDE’S equations of flow, heat and mass transfer are converted into ODE’S. The resulting non-linear ODE’S are solved numerically using an implicit finite difference method, which is known as Kellor-box method. The effects of various governing parameters on velocity, temperature and concentration are plotted for both Newtonian and non-Newtonian cases. The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters. It is noticed that the effect of angle of inclination enhances the temperature and concentration profile whereas velocity decreases. The temperature decreases due to the increase in the parametric values of Pr and Gr due to thickening in the boundary layer.

Design/methodology/approach

Numerical method is applied to find the results.

Findings

Flow and heat transfer analysis w.r.t various flow and temperature are analyzed for different values of the physical parameters.

Research limitations/implications

The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters.

Practical implications

The study of the boundary layer flow, heat and mass transfer is important due to its applications in industries and many manufacturing processes such as aerodynamic extrusion of plastic sheets and cooling of metallic sheets in a cooling bath.

Originality/value

Here in this paper the authors have investigated the MHD boundary layer flow of a Casson nanofluid over an inclined stretching sheet along with the Newtonian nanofluid as a limited.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 5 of 5